Stream Restoration Performance Assessment

Barbara A. Doll, PhD, PE

Associate Extension Professor, Biological and Agricultural Engineering Department & NC Sea Grant, NC State University, Raleigh NC

NC STATE UNIVERSITY

Natural Channel Design

- Fluvial geomorphology-based method for designing natural stable channels developed by Dave Rosgen
- Analogue procedure morphology measurements are scaled from a natural stable reference stream to determine the restoration design

High-quality "reference" streams serve as design templates

Important Questions

- What tools should be used to evaluate ecological functional uplift of restored streams?
- How do restored streams compare to high quality reference channels?

Tested five stream assessment methods at 65 restored streams EGA, SPA, RBP, RCE & SVAP

Assessment Methods

Acronym	Assessment Name	Source	Quantitative	Qualitative	Variables
EGA	Eco-geomorphological Assessment	NCSU	X	Х	44
SPA	Stream Performance Assessment	NCSU		Х	17
RBP	Rapid Bioassessment Protocol	EPA		Х	13
RCE	Riparian, Channel and Environmental Inventory	Peterson (Sweden)		Х	18
SVAP	Stream Visual Assessment Protocol	USDA		Х	11

How well do the Stream Assessments predict stream biology?

- Response Variable: Number of dominant EPT taxa
- Prediction Models (Regression)
- 1. Total score
- 2. All measured metrics individually
- 3. All measured metrics + watershed condition variables (n=6)

Can Rapid Assessments Predict EPT Taxa?

- Eliminate arbitrary averaging and summing of variables & add watershed factors
- Re-weight variables and address collinearity of variables using ordination statistics (Principal Component Analysis)
- Apply Multiple Linear Regression using Principal Components that explain 70% of the variability

Stream Quantification Tool (SQT) based on the stream functions pyramid framework

Evaluating the Stream Quantification Tool (SQT): Measure & Quantify Function

Adapted from Harman et al., 2017

	Functional Category	Measurement Method	Functional Category	Method: Measurement Method	
		Curve Number (catchment)		Total Nitrogen	
	Undrologia	Curve Number (lateral)		Total Phosphorus	
	Hydrologic	Concentrated Flow Points	Physico- chemical	Leaf Litter Processing Rate OR	
		Soil Compaction		Percent Shredders	
	Unduendie	Bank Height Ratio		Fecal Coliform	
	Hydraulic	Entrenchment Ratio		Summer Daily Max. Temp.	
		LWD Index		NC Biotic Index for	
		Large Woody Debris Piece Count		Macroinvertebrates	
		Erosion Rate	Biological	EPT Index	
		Dominant BEHI/NBS		NC Index of Biotic Integrity for	
		Percent Streambank Erosion		Fish	
		Canopy Coverage	Restoration	Watershed Catchment	
		Buffer Width	Potential	Assessment	
	Geomorphic	Basal Area	rotentia		
		Stem Density			
	Pool Spacing Ratio				
	Pool Depth Ratio				
		Percent Riffle	Tatal		
		Aggradation Ratio	<u> Total SQT Variables= Z</u>		
		Sinuosity			
		Size Class Pebble Count Analyzer			

Performance Standard Values of 1.0 are intended to represent pristine streams

Research Questions

Can the SQT Detect and Quantify Restoration Success?

How do the Performance Standards compare to High Quality and Degraded Streams?

How well does the SQT predict biology?

Site locations and selection (n=34)

- Reference Reaches (n=19)
- Degraded Streams (n=6)
- Restored Streams (n=9)

- DAs < 8.6 sq. mi.
- Watershed land use range
- Stream orders 1 3
- Restored sites > 5 years old

Methods	Functional Category	Measurement Method	Functional Category	Measurement Method	
	Hydrologic	Curve Number (catchment) Curve Number (lateral) Concentrated Flow Points Soil Compaction Bank Height Ratio	Physico- chemical	Total Nitrogen Total Phosphorus Leaf Litter Processing Rate OR Percent Shredders Fecal Coliform	
	пушаши	Entrenchment Ratio		Summer Daily Max. Temp. NC Biotic Index for	
		Large Woody Debris Piece Count Erosion Rate Dominant BEHI/NBS Percent Streambank Erosion	Biological	Macroinvertebrates EPT Index NC Index of Biotic Integrity for	
	Geomorphic	Canopy Coverage Buffer Width	Restoration Potential	Watershed Catchment Assessment	
		Stem Density Pool Spacing Ratio Pool Depth Ratio Percent Riffle Aggradation Ratio Sinuosity Size Class Pebble Count Analyzer	 Assessed 24 of 28 variable Evaluated 22 performance standards Completed catchment assessment 		oles ce

Stream sites (n=34) categorized by condition and ranked by % watershed impervious cover

Range of SQT Overall Scores and Functional Category Scores

degraded (n=6), reference (n=19), and restored (n=9)

Functional Categories

Reference Sites (n=19)

Restoration case studies Torrence Creek (Charlotte): Suburban Watershed

Restoration case studies Sandy Creek (Durham, NC): Urban watershed

Restored/Degraded Pairs – SQT Scores

Geomorphic: Percent Streambank Erosion

Which metrics are most important to macroinvertebrates?

Response variables:

- EPT Richness
- NC Biotic Index (NCBI)

Stepwise, Ridge & Lasso Statistical Models

22 Variables (SQT Model)

+ 13 Variables (Full Model)

	Runoff Curve Number	Drainage Area (DA)	
watersned	Concentrated Flow Points	% Impervious Cover	
Hydrology	Soil Compaction	% Developed	
Channel	Bank Height Ratio (BHR)	% Forest	
Hydraulics	Entrenchment Ratio (ER)	% Agriculture	
-	Large Woody Debris Index	Channel Slope (Savg)	
	Bank Erosion Hazard Index	Channel Width (W _{bkf})	
	Near Bank Stress	Channel Mean Depth (d _{bkf})	
	% Streambank Erosion	Channel Area (A _{bkf})	
	Canopy Coverage	Width-to-Depth Ratio (W/D)	
Geomorph.	Buffer Width	D ₅₀	
	Basal Area	D ₈₄	
	Pool Spacing Ratio		
	Pool Depth Ratio		
	% Riffle		
	Sinuosity		
	Total Nitrogen	Specific Conductivity	
	Total Phosphorus		
Physioco-	% Shredders		
chem.	Summer Temperature		
	Fecal Coliform		
	% Shredders		

Which metrics are most important to macroinvertebrates?

Significant Variables from Stepwise Models for EPT Taxa

SQT Model; R² = 0.64

- NBS

- BEHI
- % Streambank Erosion
- Pool Depth Ratio

- Summer Temp

- Full Model; R² = 0.88
 - + Entrenchment Ratio
 - + Width to Depth Ratio
 - + Mean Depth
 - BEHI
 - + Buffer Width
 - Pool Depth Ratio
 - + % Riffle
 - ► D₈₄
 - Summer Temp

Conclusion

- If we take into consideration watershed condition, rapid stream assessments can predict aquatic macroinvertebrate metrics in restored streams.
- Variables must be weighted based on their importance to biology
- Be sure performance standards match to desirable reference conditions
- Be sure to include all variables that are important to biology

Degraded

Reference

Restored